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ABSTRACT

One recurring problem in military operational test and evaluation is deter-

mination of the number of items to test. This thesis describes a Bayesian

method to determine the sample size that is needed to estimate a proportion

or probability with a (1-x )100 confidence when a prior distribtfinn is givpn to

that proportion. It uses the two variants of the triangular distribution as priors

and develops computer programs, graphs, and tables to assist in finding the

required sample size. These results are compared with other approaches in

determining the required sample sizes that are needed to obtain a desired

confidence interval for a proportion or probability.
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I. INTRODUCTION

In the planning of a sample survey, or in many forms of weapon system

testing, a stage is always reached at which a decision must be made about the

size of the sample. The decision is important. Too large a sample implies a

waste of reoources, and too small a sample diminishes the utility of the results.

The decision cannot always be made satisfactorily, for often we do not possess

enough information to be sure that our choice of sample size is the best one.

The topic of this thesis is to respond the question of how many observations

are necessary for a given degree of accuracy, or how large the sample size

should be to estimate proportions from a set of Bernoulli trials.

There are several ways to obtain estimates for unknown parameters. In

this thesis, we will use the definition of a confidence interval to estimate the

unknown probability or proportion. "A confidence interval for an unknown

parameter gives an indication of the numerical value of our unknown

parameter as well as a measure of how confident we are of that numerical

value. "[Ref. 1: p. 323 ] Generally, the bigger the sample size used. the shorter

the confidence interval will be.

Our major focus throughout this work is to determine the number of

samples that are needed to produce a desired confidence interval size for a

proportion or probability. This study investigates the necessary sample size

that would be used with Bayesian statistical methods that make use of the

existing experience of the experimenter and his knowledge of the phenomenon

being studied. The uniform density and beta density functions were used as

the prior distributions in [Ref. 2] and [Ref. 3] where the sample size question

based on Bayesian confidence intervals was also studied. The uniform

distribution on the interval (0.1) does not provide a great deal of flexibility in

choosing a prior. but, it distributes our ignorance equally. The beta

distribution with various parameter values allows a better control of the

decision maker's prior beliefs and the representation of skewing, but it is



difficult to translate the decision maker's knowledge and judgement into the

distribution parameters. In this work we will use the two variants of the

triangular density function as our prior distributions, because they allow a

simple representation of distributions which are either more heavily weighted

in favor of high values of proportions rather than low values or low values of

proportions rather than high values. After developing the relationship

between needed sample size and the decision maker's prior information

represented by a triangular distribution, we will provide graphs and tables to

assist a decision maker in finding the number of samples needed to produce

a desired confidence interval to estimate a proportion or probability.

We will begin by discussing various methods that can be used to find the

number of samples needed, and we will compare these methods. In Chapter

II we will describe a method to determine the sample size using classical

statistics. In the next chapter we will describe our Bayesian method with the

prior, sampling, and posterior distributions in order to find the sample size to

estimate a proportion. We will use the two variants of the triangular density

function as our prior distributions and the binomial distribution as our

sampling distribution. Also, in Chapter III we will give the derivation of the

posterior distributions. Then, in Chapter IV we will discuss how we developed

and how we can use computer programs, graphs, and tables to determine the

required sample size to obtain a desired 95% confidence interval for a

probability or proportion. Also, we will explain the computer programs used

for the Bayesian results.

In the final chapter we will summarize our work. and we will give some

suggestions for further research.



II. DETERMINING THE DESIRED SAMPLE SIZE FOR PROPORTIONS USING

THE CLASSICAL METHOD

In this chapter, we will describe how we can use classical methods to

determine the desired sample size to estimate proportions.

Statistical methods are concerned with using the numbers observed in a

sample from the population to make inferences about the population or, more

specifica - a probability measure of the population. We will study estimation

methods in this work. Problems of estimation are concerned with calculations

of the numbers that occur in a sample to guess or estimate the values of

unknown parameters of the population probability law. First we will find a

point estimate for proportions. Then we will use this point estimate to find a

confidence interval which provides an indication of a precision or accuracy of

an estimate. Next, we will use this confidence interval to determine the

required sample size.

A. POINT ESTIMATE FOR PROPORTIONS

"A point estimate of an unknown parameter is a number, computed from

observed sample values, that is used as our guess for the value of the

unknown parameter." [Ref. 4: p. 175] To estimate this value, we could use

any number we like, if we can in some way base the number we choose on the

results observed in selecting a random sample from the population.

In our case. we could calculate a point estimate. X/n, for the binomial

parameter p, where X is the number of successes in n independent Bernoulli

trials, each having p as the probability of success. That is,

P , = -n- (2.1)
,=1

This is the point estimate for a proportion p. Then we will use this point

estimate to establish a confidence interval for the proportion.

3



B. THE CONFIDENCE INTERVAL FOR PROPORTIONS

When n is large, we can use the normal approximation to the binomial.

That is. for n large and np >5, /3 has approximately a normal distribution with

mean p and variance p(1-p)/n . Since n is large, we can approximate the

variance by P(1 - /)/n. The problem of a point estimate is converted into that

of finding the confidence intervals for the mean of the normal distribution with

a known variance. Thus a (1-cz)100 percent large-sample confidence interval

for P is given by (Ref. 5: p. 325]

/A A 1 - ( ) )P Z -=,- Zl- =n 2.2)

For example, suppose that the number of defective items in a sample of
10100 is 10. Then from Equation 2.1 the point estimate is p -- = 0.1. A

confidence interval of 90% for a proportion is

0.1 x 0.9 0.1 x 0.9
(0.1-1.64501645x 1 0 0  ) (0.05, 0.15).

This says that as a result of our sample of 100 items, we are 90% certain that

this confidence interval (0.05, 0.15) contains the true value of our proportion.

But even when this is done, the desired accuracy cannot be guaranteed. "With

95 percent confidence" or "with 90 percent confidence" means that the

confidence intervals computed will in 5 or 10 cases out of 100 not include the

population parameter: in these cases, the desired accuracy will not be

attained. The only way of guaranteeing the stated accuracy is to measure each

item in the whole population.

C. SAMPLE-SIZE DETERMINATION FOR ESTIMATING PROPORTIONS USING

CONFIDENCE INTERVALS

Statisticians are often asked the question, "How many observations should

I take?" Before this question can be answered, we must know what the

4



problem is and what kind of risks the decision maker is willing to take.

Suppose the decision maker is interested in finding a (1-,x) level confidence

interval of a proportion. Suppose further that he wants a proportion to be

estimated within A units of the true proportion. In that case. the length of the

confidence interval desired is 2A. Then our true proportion P will be bounded

by

^-A PP +A,

where A is the maximum error of estimate and

AO = ZI_ (2.3)

Hence, we can determine the sample size n by solving Equation 2.3. obtaining

n= Z 2  (1-P)
n A2 (2.4)
2 A

Equation 2.4 gives the value of n, and a nearest integer would suffice as the

sample size. Note that the required n depends on the value of p which we

must assume before we select the sample from which we will estimate it. We

cannot use the actual value of p in the calculation because it is still unknown.

The sample size n given by Equation 2.4 is maximized at p = 0.5. Thus for

worst case planning Equation 2.4 yields, for c= 0.05,

n 1.96A ) (0.5) (0.5)- 0.9604A2

Here, for example. if we wish the size 2A of the 95% confidence interval to be

0.10. then we can find n = 385.

"-- I II ...mannnmmnmun I nil Rim = IR S



Values of n given by Equation 2.4 to determine different 95% confidence

interval for different proportions can be found by using Table 1. For example,

suppose that p = 0.5, and 2A = 0.20 is desired for a 95% confidence interval.

Then we can find n = 97 by Table 1.

Table 1. DESIRED SAMPLE SIZE FOR 95% CONFIDENCE INTERVAL

95% Confidence Experimenter's Guess about Probability of Success
Interval Size =

2A 0.5 0.6 0.666 0.7 0.8 0.9 0.975

0.05 1,537 1,476 1,366 1,291 984 554 150

0.10 385 367 341 323 246 139 38

0.15 171 164 152 144 110 62 17

0.20 97 93 86 81 62 35 10

0.25 62 60 55 52 40 23 6

0.30 43 41 38 36 28 16 5

An alternative to this approach to finding sample size employs a prior

distribution for P and Bayes' theorem. In the next chapter we will describe the

prior distributions, the binomial sampling distribution, and posterior

distributions as they are related by Bayes' theorem. We will also explain our

rationale for selecting the two variants of the triangular distribution as our

prior distributions.



III. A BAYESIAN METHOD FOR THE ESTIMATION OF PROPORTIONS, USING

TRIANGULAR PRIORS

Statistical inference and decision problems about proportions can be dealt

with using Bayesian analysis. In the Bayesian approach to statistics, an

attempt is made to utilize all available information (both sample and prior

information) in order to reduce the amount of uncertainty present in an

inferential or decision making problem. As new information is obtained, it is

combined with any previous information to form the basis for statistical

procedures. The formal mechanism used to combine the new information with

the previously available information is known as Bayes' theorem.

In Chapter II we discussed the use of the classical method to estimate

proportions. In this chapter we will study the three parts of a Bayesian method

to determine the required sample size to estimate proportions: the prior

distribution, the sampling distribution and the posterior distribution. The

terms "prior" and "posterior" are relative to the observed information. Next

we will discuss why we selected the triangular density function as our prior

distribution and the binomial as our sampling distribution. Finally, we will

derive our posterior distributions by using Bayes' theorem.

A. BAYES' THEOREM

We will use Bayes' theorem throughout this work to estimate a proportion.

Bayes' theorem is a relatively minor extension of the definition of conditional

probability.

The typical phrasing of Bayes' theorem is in terms of disjoint events
A,. A2 ..... A.,. whose union has probability one (i.e., one of the A, is certain to
occur). Prior probabilities P(A,), for the events, are assume known. An event
B occurs, for which P(B I A,) (the conditional probability of B given A, ) is
known for each A,. Bayes' theorem then states that

P(A I B) nP(B I A) P(A)

Z_ P(B I A1) P(AJ)
j=7



for any 1 < i _5 n . These probabilities reflect our revised opinions about the
A,, in the light of the knowledge that B has occurred. [Ref. 6: p. 129]

The version which we will use is exactly analogous if we adopt the

following changes:

1. Replace P(A,) with a probability density function, f(p).

2. Replace summation, v, with integration, f, and

3. Let X be the number of successes in n independent Bernoulli trials
instead of B.

The version of Bayes' theorem [Ref. 7: p. 220] that results is

fp I X) = P) V) (3.1)J f(X P = p) f(p) dp

where P is a continuous random variable with density function f(p) so that

{ f(p) dp = 1.

We will look at Equation 3.1 in three parts. The density function ftp)

represents the prior distribution ( before any sampling ). which will be one of

the variants of the triangular density function in our work. The sampling

function is f(XI P = p) that is binomial with the sample size n. The probability

function f(p I X) is called the posterior distribution, obtained by combining the

prior information f(p) and the sample information (X). At the same time, the

mean of the posterior distribution is called the Bayesian estimate of P.

In our continuous case, Bayes's theorem can be expressed in words as

Posterior distribution =(Prior distribution) (Sampling distribution)

f (Prior distribution) (Sampling distribution)



B. THE SELECTION AND USE OF PRIOR DISTRIBUTIONS

The question is: How should one use the important prior information?

Bayesian analysis allows effective use of prior information through statement

of a prior distribution. The prior distribution should, of course, reflect the

decision maker's prior information, which may occur in a wide variety of

states. Larson says:

The prior distribution of a parameter P can be a probability function or
probability density function expressing our degree of belief about the value
of P, prior to observing a sample of a random variable X whose distribution
function depends on P.[Ref. 1: p. 553]

Different distribution functions can be characterized as "priors". In this

study we will use the two variants of the triangular density function, which are

developed in the Appendix A, as our priors. They are as follows:

2 (Pmax--), for 0 < P ! Pmax - 1,fl(p) Pm Pax (3.2)
elsewhere,

and

2 (Pmin - P) for 0 < PminPK < P < 1,

f2(P) =0 (Pmin - 1)2 elsewhere. (3.3)
0, eswee

We also derived the means of these two variants of the triangular density

function in the Appendix A, which are respectively as follows:

PmaxEl (P) = 3 'x

3

and

9



1
E2(P) =-L (Pmin + 2).

These two variants of the triangular density functions are graphed as

functions of P in Figures 1 and 2 respectively. We also notice the symmetry

between the functions shown in Figures 1 and 2.

a

0 0.2 0.4 0.6 0.0 1.0
P Prnx

Figure 1. Triangular Density Function with Parameter (p,,,J

10



U 0.4 0.6 0.8 1.0

P

Figure 2. Triangular Density Function with Parameter (Pm.)

Note that when the triangular density functions have parameters p,, = 1

and p ,=O in Equation 3.2 and 3.3 respectively, they are special cases of the

beta density function when .=1, /=2 and when 7=2. /3=1. They are as

follows:

f~p 1 p, 0:! :E 1,(3.4)
t0, elsewhere.

and

11



f(p I o=2,#= 1) = J 2 p , 0<p 1 . (3.5)0. elsewhere.

In our study the sample information will be represented in terms of a

sampling function by the binomial distribution. A random variable X has a

binomial distribution with parameters n and p if X has a discrete distribution

for which the probability function is as follows:

(n) px qn-x for x =0,1.2.n.
f(x In. p) = x (3.6)

,O elsewhere.

In this distribution n must be positive integer, p must lie in the interval

0!sp l land the variablesx ..... xn form n Bernoulli trials with parameter p.

[Ref. 8: p. 245J

Suppose that P, a random variable, represents the market share of a new

brand of a certain product. The value of P is a proportion and can take on any

value between 0 and 1. The new brand is considerably different from the other

brands of the product, so we are quite uncertain about the share of the market

that it will attract. We think that it might attract virtually the entire market for

the product (that is, P might be close to 1), it might not be successful at all

(that is, P might be close to 0), or it might be moderately successful. Again

we assume that P is continuous random variable. We think that low values of

P are more likely than high values, and we assess a prior distribution for P that

is a special case of a variant of the triangular density function (see Equation

3.4).

In the example of the market share we wish to obtain more information

about P. A sample of five consumers of the product is taken: one purchases

the new brand and the other four purchase other brands. We also assume that

12



the process of purchasing this product has n independent Bernoulli trials.

That is. the probability that a randomly selected consumer purchases the new

brand is equal to P, the market share. The sample information can be

represented by the binomial distribution that is as foilows

f(X I p) = 1 p(1 - p)4.

This sampling distribution is graphed in Figure 3.

f(Xlp)

0.2 0.4 0. 0. 1.0
P

Figure 3. The Sampling Distribution In the Example of the Market Share

Also, the prior distribution of this example is from Equation 3.4, and is

illustrated in Figure 4.
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0n

a

0 0.2 0.4 0.0 0.8 1.0
P

Figure 4. The Prior Distribution in the Example of the Market Share

Applying the version of Bayes theorem in Equation 3.1. we have the posterior

distribution

f(P I X) 1 (2 (1 - p)) (5p (1 - p) 4

f (2( -p) 5 1_ P)4_-pV

p(1 - p)5 dp

.0
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The denominator can be stated so that the integral is over a beta density

function, yielding

E(2)F(6) F(8) p2 (1 - p)6 dp 1

F(8) J F(2)F(6) p  42

Thus, the posterior density function of P is

f(p I~ _ f42p(1-p)5 , ifO _p 1,
I0 elsewhere.

This posterior distribution is illustrated in Figure 5.

f(plX)

0 0.2 0.4 0.! 0.5 1.0
P

Figure 5. The Posterior Distribution in the Example of the Market Share

15



This example illustrates how the version of Bayes' theorem in Equation 3.1

provides a convenient way to revise density functions in terms of sample

information, as shown by a comparison of Figures 4 and 5.

C. GENERAL DERIVATION OF THE POSTERIOR DISTRIBUTION WHEN THE

PRIOR DISTRIBUTION IS TRIANGULAR

Using Bayes' theorem, the prior information (represented by the prior

distribution) and the sampling distribution are combined to form the posterior

distribution of P. The posterior distribution summarizes our degree of belief

of the location of P, given the results of the sample. Of course, the posterior

distribution depends on the sampling function as well as on the prior

distribution.

At this point, we need to remember the definition of the beta distribution

because we will use it in the remainder of this work.

It is said that a random variable P has a beta distribution with parameters x
and 13 ( :> 0 and /3 > 0 ) if P has a continuous distribution for which the p.d.f.
f ( p . )is as follows .

. ) pY(1-p)_, for 0 <p<1.

f(,p I ., ,) = )F(/3) elsewhere, (3.7)
0,

[Ref. 8: p. 294].

In later equations, the density function f(p I a, P) in Equation 3.7 will be

shown as b(p: ., g3). Having defined the beta distribution for later work, we

are ready to seek the posterior distributions that occur with prior triangular

distributions and the binomial sampling distribution.

1. Posterior Distribution with Prior Triangular Distributions Having

Parameter Pmax

First, we will derive the posterior distribution by using a prior

triangular distribution with parameter p, which is going to be more heavily

weighted in favor of low values of P rather than high values. Applying the

version of Bayes' theorem in Equation 3.1 to combine the prior triangular
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distribution in Equation 3.2 and the binomial sampling distribution in Equation

3.6 , we have

(n'\X( 1  _p)n--x 2-- . ma _ )

ilP l A) = ('mxpmax(Pa)

'n/

I ) x~ _ - )f 2
- 2 (max -p)dp

"0 Prax

where 0 < p _< Pmx < 1.

If we cancel out some terms, we have

pX(1 - p)l-X(Pmax -p)
f1 (p I x) =Fma

Pmax<

p X 0 - p)n-X(Pmax - p)dp

If we multiply terms in the denominator, our posterior becomes

pX) = X(1 _ p)n-x(Pmax -P)L Pmax
Pmax PX(1 - P)n-Xdp - PX+l( 1 _ P)n-Xdp

• '0 "0

We multiply the denominator by the same terms to create the beta density

functions. b(x+1,n-x+ 1). under the first integral, and b(x+2,n-x+1) under

the second integral. Then the denominator is

L(Pmax F(x + )F(n - x + 1) maxb(,x + 1,n- x + 1)dp]-

KF(x + )~ ) fPmaxbpx+2n-x]d
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By using the property of the gamma function that

F(a) = (;c -1) r(. -1), (if 2>1).

the denominator becomes

E( 'x lF(n-x l fp '[ ( ±2) ± .

(max (x) b(p;x + 1.n - x + 1)dp -

L( (x + 1)r(x + i)F(n - x + 1) ) a m (p:x + 2,n - x + 1)dP].

If we combine terms, we have the posterior distribution f(P Ix) as

1n + 2) ma (x)]

r(x + 1)F(n- x + 1)/ [(Px(1  P)- --max - 0 - P+)

Pmax P-ab(p:x + 1,n - x + 1)dp - b~px + 2,n - x + 1)doj

When we multiply the terms in the numerator, multiply the second term by
X + 1 x n+2) and then use the property of the gamma function that
n+2 x+ 1

F (n +3) = (n +2) F (n+2) we will obtain two forms of the beta density function

with parameters

* 2, = X + 1

S(2 = x + 2

* and #, = = n - x + 1.

The posterior distribution, f,(p I x), becomes

[x+ b4-~ +1, x+)

[Pmaxb(px + 1,n - x + 1)] [n + 2b(px+2,n-x+ 1)]

pmaxj ' b(p:x + 1.n - x + 1)dp n + 2 b(p;x + 2.n - x + 1)dp

18



We notice that the denominator has two forms of the beta cumulative

distribution function with the same parameters o,, 3 (21 and /32 , which is

shown as B(pma: -, /). Therefore we have

[ x+1 b(p'x+2,n-x+l1)][Pmaxb(p x+l1,n- x+l1)] - xn+2 1 '~ 2n-x+1

[PmaxB(Pmaxx+ 1,n -x+ 1)]-x+ 1 B(Pmax; x + 2 ,n - x + 1)

So finally, our posterior distribution becomes

Sx+lbp" ;2. fl2)1
Pmab( ;1fl1)-n + 2 '

f1(,o I x) = , (3.8)
[PmaxB(Pmax 0(1, f13)1 x + 1 B(Pmax n 22) (

where

* p is the probability of success (0 < p _ pma_< 1).

* x is the number of successes that occurred in n independent Bernoulli
trials.

* B (Pn.: *y./3t) and B (Pna.: C2. 2) show the beta c.d.f.,

* b (p: 7,. /,) and b (P; 2. /2) show the beta p.d.f.,

S ., = x + 1,

Y = x+2,

* and#/, = /#2 = n - x + 1.

Using a prior triangular distribution with parameter p,,× and a binomial

sampling distribution, we have the posterior distribution in Equation 3.8. This

posterior distribution shows that the size of the confidence interval for the

proportion P depends upon the parameter of the prior (Pm,×,), the sample size

n, and the number of successes x.

We remember from the classical method that we need to know the

number x of successes (before sampling) to determine the number n of

samples. So, prior to sampling, we will make an assumption about x that it is
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equal to its expected value which is the mean of the prior triangular

distribution with parameter P,,, multiplied by the number of samples, or

(Pmax
x = (n3

Applying the result of this assumption into Equation 3.8, we have the

posterior distribution as

'Prnaxb 
npm a + 3 3n - npmax+ 3 n11[ nPmax +3 b( n pax + 6 3n - npmax +3

nPma-( +3 3n - nprnx+3 
_P max +3 nPmax +6 3n - nPra +3

3 3 3n-+ 6 B 3 3

If we let

0 - n p,< + 3

3
n p,, . + 6

3
1 9 -n r, + 3

3
and N, p,... -.

SandN=+ 6

one of the our posterior distributions becomes

f1(p I x) [Pmax b(p "a. #01] - [N, bIc." (3.9)
[Pmax B x; (P ma )] - [N, B(Pmax : U2- #2)]

where c'. . /3, and #* > 0.

The final form of one of our posterior distributions continues, of course.

to have two forms of the beta density function with parameters 01;, 4o /, /3 in

the numerator and two forms of the cumulative distribution function of the beta

distribution with same parameters a*, c, ,, /fl in the denominator. This

means that existing computer programs for both the beta density function and

20



the beta c.d.f. can be employed in our computationial work to relate desired

confidence interval size to the sample size.

2. Posterior Distribution with Prior Triangular Distributions with

Parameter Pmin

Now we will derive the posterior distribution by using a prior triangular

distribution with parameter p m ,,. Here, f(p) is going to be more heavily

weighted in favor of high values of P rather than low values. Applying Bayes'

theorem from Equation 3.1 to combine the prior triangular distribution in

Equation 3.3 and the binomial sampling distribution in Equation 3.6,

(n) -n-x - 2 (Pmin - P)
( )x~l (Pmin -1) 2

f2PI x) = (~ i
VPlx( _ p)n-x -2(Pmin P)

fo -
x  (Pmin -112 dp

where 0 _ Pn - P < 1. After we apply the same steps shown above in the

derivation of the f,(p I x) , the posterior distribution, f2tp I x) , becomes

[Pminb(P 3 f 3) - n + 2 b(p ; Y4 , P4)1

± 1 (3.10)

Pmin[1 - B(Pmin "'3- #3)[- n + 2- -2

Here

* p is the probability of success ( 0 _ p,, < P < 1).

* x is the number of successes that occured in n independent Bernoulli
trials,

* B (Prin: 0(3, #,) and B (Prm: (4. #4) show the beta c.d.f.,

* b (p; CX, #3) and b (p; a4, #4) show the beta p.d.f.,

* 3 = X + 1,

a = x + 2,

* and/3 = 4 - x + 1

21



Using a prior triangular distribution with parameter pm, and a binomial

sampling distribution, we have the posterior distribution in Equation 3.10. This

posterior distribution shows that the size of the confidence interval depends

upon the parameter of the prior (Pm,). the sample size n, and the number of

successes x.

At this point, we also need to know the number x of successes (before

sampling) to determine the number n of samples. So we will make an

assumption about x that it is equal to the mean of the prior triangular

distribution with parameter p,,,, multiplied by the number of samples, or

= ( (Pmin +2)).

Applying the result of this assumption to the Equation 3.10, we now

have the posterior distribution f2(p Ix) as

F "rnn +2'i +3 nl - npi +3 - np,n +2n 4- 3 b( n~min +2n +4-6 rl -~ i r' ~-3
3 3 L 3 + 6 3 3

.rp.. -2n + 3 n -Cm, +2r - 3 B r;:m +2n + 6 n - np,,, +3
p,,, 1 S3 , 3 - 3n+6 1-B3 3

If we let

np,, + 2n + 3

np,, + 2n + 6
4 3

n - n P~in + 3* = = ffP 3  '
3

sand N2 = 3 +2n + 3
3n+ 6

then our second posterior distribution becomes
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f 2( I ) =[Pmin b (p :73 fl*/3)] - [N, b (p :% /3 4)]'31'2(P I X)  = . , '(3 .11)

{Pmin [I - B Pmin; 0[3- /3)]} - {N 2 [I - B(Pmin; 0(4 , /4)]}

where o-,a; c, fl, and P- > 0.

The final form of our second posterior distribution has also two forms

of the beta density function with the pararn..ters a, cx, /3, fl; in the numerator

and two forms of the beta cumulative distribution function with the same
parameters c, c, fl', fl" in the denominator.

We will use Equation 3.9 and Equation 3.11 as our posterior

distributions in computer programs which were written in APL.

In the next chapter we will present computer programs, tables, and

graphs that can be used by a decision maker to determine the required sample

size to obtain a desired size for a 95% Bayesian confidence interval for a

probability or proportion. Also, we will show that in the Bayesian method, the

desired sample size may be smaller than the sample sizes obtained by using

the classical methods of Chapter II.
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IV. DETERMINING THE DESIRED SAMPLE SIZE TO ESTIMATE

PROPORTIONS USING THE BAYESIAN METHOD

In this chapter we will discuss the Bayesian method by making use of

subjective probabilities measuring degrees of belief in order to determine the

number of samples for proportions. As we mentioned in Chapter III. these

probabilities are called the prior distribution. Thus when using the Bayesian

method, this prior distribution summarizes the decision maker's subjective

degree of belief about the unknown values of proportions. When the decision

maker has this subjective prior information (degree of belief) about bounds for

the unknown proportion which can be described by prior triangular

distributions having parameters P,a or p, the sample size can be

determined by using these triangular distributions, the desired confidence

level, and the confidence interval size.

First, we will discuss some of the considerations the decision maker might

make which would lead to the selection of a prior triangular distribution. In the

next section. after developing the relationship between the desired sample

size and the decision maker's prior information represented by one of the two

variants of the triangular distribution, we will explain the tables which are

related to the Bayesian interval sizes and the number of samples. Next, we

will explain the graphs to determine the number of samples for proportions.

Finally. we will discuss the Bayesian method using the prior triangular

distribution in which the sample sizes may be smaller than the sample sizes

obtained by using the classical method in Table 1 on Page 8. Throughout this

chapter we will also explain how the computer programs work in determining

the sample size to estimate proportions.

A. DETERMINING THE PRIOR TRIANGULAR DISTRIBUTIONS AND THEIR

PARAMETERS

Under what conditions might one of the two forms of the triangular density

function be reasonable as priors? We can use the forms of the triangular
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distribution as priors to represent skewing without having extensive additional

information about the prior distribution. When the decision maker feels

skewing is present, a triangular prior is an improvement over the prior uniform

distribution, and the prior triangular distribution is also less complicated than

a prior beta distribution where two parameters, which may be subjective, must

be stated to fit the decision maker's prior information. For a prior triangular

distribution, for example, the only information needed from the decision maker

is that low values of P are more likely than high values (e.g., P - proportion

nonconforming) and a statement of pr,, which could be 1.0. Alternately, the

decision maker may feel that high values of P are more likely, in which case

he or she needs only a value for pm,!-' which could be 0.

First, we consider a random variable P with the triangular density function

of the form in Equation 3.2 which is as follows:

2
f po'2 (Pmx-P), for 0 <P -Pmax -1.G P) = max

0, elsewhere.

This prior triangular distribution is going to be more heavily weighted in favor

of low values of P rather than high values. One way the decision maker can

decide the parameter of this prior triangular distribution is by using the mean

of this prior triangular distribution, which is E(P) P and must be selected
3

between 0 and 0.33333. For example, if the decison maker guesses the mean

value as 0.2, the parameter can be found as follows:

Pmax = 3E(P) = 0.6.

At the same time, the value of parameter pm, reflects the amount of positive

skewing.

Next, we consider the other form of the triangular density function in

Equation 3.3 which is as follows:
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2 (Pmin - P) for 0 < Pmin P < l1
f2(P ) = (P i n -_ 1) 2

0, elsewhere.

This form of the triangular density function with parameter Pm,n is going to be

more heavily weighted in favor of high values of proportions rather than low

values. Again, one way by which the decision maker can decide the parameter

of this prior triangular distribution is to use the mean of the prior triangular

distribution, which is E(P) = - (pj, +2) and must be selected between 0.66666

and 1. For example, if the decison maker guesses the mean value E(P) as 0.8.

the parameter can be found as follows:

Pmin = 3E(P) - 2 = 0.4.

At the same time. the value of parameter Pr,,o reflects the amount of negative

skewing.

These examples show how triangular distributions allow the decision

maker to express prior beliefs about the values of P when only limited

information is available. We will next explain how we find the Bayesian

bounds and interval sizes.

B. FINDING THE BAYESIAN INTERVAL SIZES AND BOUNDS

We gave the derivation of the posterior distributions in Chapter III when

the priors are in the form of the triangular density function. Results from these

posterior distributions are as follows:

[Pmax b(p; aii, [Nj)] - [N1 b(p ; 2 2)]
fi(P I x) =

[Pmax B(Pnax; OC, 1;)] -2 [N2 B(Pmax" c2 1 )]

where :,.. c/2f, and /2 > 0. and

I [Pmm b~p 03. 33) - N2 b(p ; l 13)]
f2 (P I X) = ff

) Pmin [1 - (Pmin : C3 , #3)]} - {N 2 [i - B(Pmin; 4. 134)]} '
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where o, a", fl, and fl3 > 0. In these expressions we assumed that the number

of successes is equal to the mean of the prior distribution times n. The

posterior distributions in the above forms are here for the purpose of finding

sample size. As we mentioned in Chapter III, they are in the form of linear

combinations of two beta density functions in the numerator, and the linear

combination of two beta cumulative distribution functions in the denominator.

The parameters are functions of the sample size n, and Pm or PNin. The

denominators are not functions of the random variable P.

If we specify a value for the sample size n and a value for Pm, or p,,, we

can compute (for, say, a 95 percent confidence level) the cumulative

distribution functions at 0.025 and 0.975 for the posterior density functions.

We notice that the term in the denominator is constant for given Pna, and n.

For example, the cumulative distribution functions of the posterior

distribution f,(pI x=- 3) at 0.025 and 0.975 are

, .1o'p.Io

Pmax b(P)dp - N1, b(p)dp

F, (p.1o) - = 0.025. 14.1)

Prrax b ~p: - Ni b(p: -2 Il 2)dP
0 0

and

p.p _ P.Up
Pmaxj b()dp - N, b(p)dp

F1(p up) -ms, =pax 0,975. P4.2)

Pmax ob(Pl -). fl;)dP - N JO b(P: !2' l2)dP

Using the above equations we can obtain the lower and upper bounds of the

95 percent Bayesian confidence interval that would result had the number of

successes in the sample been equal to the mean number from the prior

distribution. Finally, we will find the interval sizes by subtracting the upper

bound from the lower bound.
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For the above procedure, we developed the APL programs named

PMINIMUM and PMAXIMUM, which are given in Appendix B and C.

respectively. The program, PMINIMUM. is for the posterior distribution with

the prior triangular density function having parameter Prn and PMAXIMUM is

for the other posterior distribution with the prior triangular distribution having

parameter Pma,. Both programs are the main programs used in our analysis.

Each program is interactive and the user is required to enter the bound of the

prior triangular distribution ( Pmax or pm,n ) and the sample sizes.

For example, the APL program, PMAXIMUM, computes the upper bounds,

the lower bounds, and the Bayesian interval sizes using Equations 4.1 and 4.2.

Also it uses the APL program BETA which was designed at the Naval

Postgraduate School to compute the beta density function. This program is

given in Appendix D. It should be noticed that if the total parameter value of

any of the beta distributions in the posterior distributions exceeds 255 ( i.e..

3] + f3 255 or c- + 13 >_ 255 ), BETA cannot compute the beta density

function.

In the next section, we will explain how the decion maker can use these

tables.

C. DETERMINING THE SAMPLE SIZES WITH TABLES

Decision makers can use tables to facilitate their determination of the

sample size using the prior triangular distribution and a desired confidence

level.

Let us explain with examples how the decision maker can use these tables.

Suppose that the decision maker's prior triangular distribution parameters are

Pmra= 1 or Pr, =0. Also suppose that the decision maker desires the Bayesian

interval size (2A) to be 0.20 for estimating the proportion, with a 95 percent

confidence level. The APL programs create tables similar to Tables 2 and 3

using the parameters Pa = 1 or p,,, = 0. respectively. Then the decision

maker can find the sample size, 81, from Table 2 or 3. This is the desired

sample size n that reflects both the decision maker's subjective bounds and a

95 percent confidence level.
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As we mentioned in Chapter III, the prior triangular distributions having

parameter Pm, = 1 and p,=0 are symmetric which also holds for p,= 0.8

and p, =0.2 or other situations. Therefore, we notice that their Bayesian

interval sizes are the same (see Table 2 and 3), but also we should notice that

they have different lower and upper bounds with the same Bayesian interval

size.

Table 2. SAMPLE SIZES AND BAYESIAN INTERVALS USING THE TRIANGULAR
PRIOR DISTRIBUTION WITH PARAMETER PMAX= 1.0

Sample Size Lower Bound Upper Bound Bayesian Interval Size
n = 2A
1 0.0259 0.7890 0.7631
2 0.0397 0.7484 0.7087
3 0.0527 0.7164 0.6637
4 0.0647 0.6905 0.6258
5 0.0755 0.6690 0.5935
6 0.0852 0.6509 0.5656
7 0.0940 0.6353 0.5412
8 0.1020 0.6217 0.5197
9 0.1093 0.6097 0.5005
10 0.1159 0.5991 0.4832
20 0.1607 0.5334 0.3728
30 0.1857 0.5001 0.3144
40 0.2022 0.4791 0.2769
50 0.2142 0.4644 0.2502
60 0.2233 0.4534 0.2300
70 0.2306 0.4447 0.2140
80 0.2366 0.4376 0.2010
81 0.2372 0.4370 0.1998
82 0.2377 0.4364 0.1987
83 0.2382 0.4358 0.1975
84 0.2388 0.4352 0.1964
85 0.2393 0.4346 0.1953
90 0.2417 0.4318 0.1901
100 0.2460 0.4268 0.1807
110 0.2498 0.4225 0.1727
120 0.2531 0.4187 0.1656
130 0.2560 0.4154 0.1593
140 0.2537 0.4124 0.1537
150 0.2611 0.4097 0.1487
160 0.2632 0.4073 0.1441
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Table 3. SAMPLE SIZES AND BAYESIAN INTERVALS USING THE TRIANGULAR
PRIOR DISTRIBUTION WITH PARAMETER PMIN=0o0

Sample Size Lower Bound Upper Bound Bayesian Interval Size
n = 2A

1 0.2110 0.9741 0.7631
2 0.2516 0.9603 0.7087
3 0.2836 0.9473 0.6637
4 0.3095 0.9353 0.6258
5 0.3310 0.9245 0.5935

6 0.3491 0.9148 0.5656
7 0.3647 0.9060 0.5412

8 0.3783 0.8980 0.5197
9 0.3903 0.8907 0.5005
10 0.4009 0.8841 0.4832
20 0.4666 0.8393 0.3728
30 0.4999 0.8143 0.3144
40 0.5209 0.7978 0.2769
50 0.5356 0.7858 0.2502
60 0.5466 0.7767 0.2300
70 0.5553 0.7694 0.2140
80 0.5624 0.7634 0.2010
81 0.5630 0.7628 0.1998
82 0.5636 0.7623 0.1987
83 0.5642 0.7618 0.1975
84 0.5648 0.7612 0.1964
85 0.5654 0.7607 0.1953
90 0.5682 0.7583 0.1901
100 0.5732 0.7540 0.1807
110 0.5775 0.7502 0.1727
120 0.5813 0.7469 0.1656
130 0.5846 0.7440 0.1593
140 0.5876 0.7413 0.1537
150 0.5903 0.7389 0.1487
160 0.5927 0.7368 0.1441
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It is true that

* Upper Bound (in Table 2) = 1 - Lower Bound (in Table 3) or

* Lower Bound (in Table 2) = 1 - Upper Bound (in Table 3).

Therefore after obtaining the tables with the triangular density function using

Pmn, it is easy to obtain other tables with the triangular density function using

rax •

Tables such as Table 2 and Table 3 with various values of Pmax and p,, that

can be used to determine the sample size needed to produce a desired

confidence level to estimate a proportion are located in Appendices E and F.

In the next section, we will explain how the decision maker can use graphs to

determine the sample size to estimate proportions.

D. DETERMINING THE SAMPLE SIZES WITH GRAPHS

In this section, we will provide graphs to assist in determining the number

of samples by using triangular distributions with various parameters as priors.

Programs PMINIMUM and PMAXIMUM create vectors in the APL

workspace of the lower bounds, the upper bounds, and Bayesian interval

sizes. If we plot the vector of the sample sizes versus the vector of the lower

bounds and the upper bounds, we can obtain the graph illustrated in Figure

6. From Figure 6. it can be seen that when the sample sizes increase, the

Bayesian interval sizes decrease.

If we plot the vector of the sample sizes versus the size of the 95 percent

Bayesian interval we obtain the graph illustrated in Figure 7. Let us explain

with an example how the decision maker can use this graph. Suppose that the

decision maker's prior triangular distribution parameter is p,,, =0. In addition,

suppose that the decision maker desires the Bayesian interval size to be 0.20

with a 95 percent confidence. First, the decision maker, using Figure 7, must

find 0.20 on the ordinate and then move across the graph to where 0.20

intercepts the curve. The decision maker can then read the sample size,

approximately 81, on the abscissa.

The decision maker can find graphs in Appendix G with various

parameters of the prior triangular distribution to determine the sample sizes
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.Figure 6. Number of Samples vs the Bounds of the 95% Bayesian Interval with

a Triangular Prior Distribution Having Parameter Pmin = 0

needed to obtain a desired 95 percent confidence level for proportions. In the

next section we will study the sensitivity of sample size to the bounds in the

prior distribution.

E. SENSITIVITY OF SAMPLE SIZE TO THE PARAMETERS IN THE PRIOR

DISTRIBUTION

At this point the decision maker may be interested in this question: how

will variations in the prior distribution affect the ultimate decision? Or, in other

words, how sensitive is the sample size n to the (possibly) guessed value of

the bound (Pa,, or Po,,) in the prior distribution? To answer these questions

we will change Pra or P,,n with the sample size n held constant, and we will

look at the values of the Bayesian interval size 2A. For example, if we want the

Bayesian interval size 2A to be 0.2 and guess Pm,n =0.2, we obtain n=70. Now
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Figure 7. Number of Samples vs the Size of the 95% Bayesian Interval with a

Triangular Prior Distribution Having Parameter Pmin=O

if we change our guess, e.g.. pn=0 .1, and use n=70, we obtain 2A=0.2079.

Erroring in the other direction, for pm, =0.3 and n=70, we obtain 2A=0.195.

Thus for this example, the sample size n and the choice of bounds Pm,, or Pm,n

appear to be relatively insensitive. When the sample sizes are bigger, the

sample size n is reasonably insensitive to the choice of guessed values of pm,n

or P,,,x (see Figure 8).

Next, we will make a comparison between methods.

F. COMPARISON OF THE CLASSICAL METHOD AND THE BAYESIAN

METHOD USING THE TRIANGULAR PRIOR DISTRIBUTION

Let us compare the results obtained by using our approach versus the

classical method. The classical method for determining the desired sample
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sizes to estimate proportions requires the decision maker's guess about the

probability of success and the length of the confidence interval (2A). The

Bayesian method, our alternative approach, needs 2A and the bounds or

parameters of the prior density function and direction of skewing. Also, in this

discussion we note that

For any finite sample size, the Bayesian estimate is 'shaded' toward the
prior mean. 'he best guess for P before any sample values were taken. This
effect disappears as n increases indefinitely.[Ref. 1: p. 566]

Suppose that the bound of the prior triangular distribution is Pr,n=0 and

the desired interval size (2A) is 0.20. Then we find E(P)= 0.6666 as the mean

of this prior. Suppose that this mean value from the Bayesian method is equal

to the decision maker's guess about the probability of success in the classical

method. By using this value in Table 1 on page 8, the classical method

requires 86 as the sample size. At the same time, if we use the tables based
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on the Bayesian method we find the sample size to be 81 from Table 3. Other

examples are shown in Table 4.

So, if we compare the results of these two methods which meet the above

requirements, we realize that the results of the Bayesian method are quite

favorable to those obtained using the classical method. When the values of

the sample sizes are smaller, the values of the sample sizes based on

Bayesian method are quite different. This is apparent from the results in Table

4. Larson says, "The difference between the Bayesian values, and the

classical approach, disappears as n increases" (Ref. 1: p. 5731. Also, we

realize that when the sample sizes become larger, the posterior distribution

becomes less dependent on the subjective prior information and more

dependent on the objective sample information.

Table 4. COMPARISON OF THE CLASSICAL AND THE BAYESIAN METHODS

Prior Prior Size of Sample Size Sample Size
Bound E(P) Interval from Bayesian from Classical

Nil 2A Method Method

0 0.66 0.15 147 152

0 0.66 0.20 81 86

0 0.66 0.25 50 55

0 0.66 0.30 33 38

0.1 0.7 0.15 139 144

0.1 0.7 0.20 76 81

0.1 0.7 0.25 47 52

0.1 0.7 0.30 31 36

0.2 0.73 0.15 129 135

0.2 0.73 0.20 70 76

0.2 0.73 0.25 43 49

0.2 0.73 0.30 29 34

In the next chapter, we will summarize our study, and we will give some

suggestions for further research and study.
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V. SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH AND STUDY

Determination of the number of items to be tested remains an important

problem in military operational test and evaluation, particularly when a

proportion, such as an item's reliability, is to be estimated. One well known

approachi is to state a requirement for the size of the confidence interval that

will estimate the proportion, and then use that requirement to determine the

sample size.

Application of Bayesian statistics (which employ prior information about

the proportion to be estimated) can reduce the number of observations

needed. Floropoulos [Ref. 3] studied the case where, prior to sampling, the

decision maker might be able to bound the proportion, but was uncertain

about it otherwise. Manion [Ref. 2] examined the sample size determination

question when enough prior information was available to specify a beta

distribution as a prior. The study in this thesis looked at the case where there

was more information present than the uncertainty represented by a uniform

distribution, but not enough detail to use a beta prior.

In this chapter, we will summarize how we used the Bayesian method with

the triangular priors to obtain the sample sizes to estimate proportions.

Finally, we will give some suggestions for additional studies.

A. SUMMARY

Throughout this study, we described the Bayesian method to determine

the desired sample size that is needed to estimate proportions with a (1-7 ) 100

confidence when a prior distribution is given to a proportion.

First, we described a classical method to determine the sample size for

estimating proportions using confidence intervals. Then, we described an

alternative to this approach which was the Bayesian method. We studied the

three parts of this Bayesian method: the prior distribution, the sampling

distribution, and the posterior distribution. When using the Bayesian method,

the prior distribution expresses the decision maker's degree of belief of the
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location of proportion P prior to sampling, and the posterior distribution

expresses the decision maker's degree of belief of the location of proportion

P given the results of the sample. We developed and used the two forms of the

triangular density function as our priors, Using Bayes' theorem, we combined

these two prior triangular distributions and the binomial sampling distribution

to form the posterior distributions. The forms of these posterior distributions

had two forms of the beta density function in the numerator and two forms of

the beta cumulative distribution function in the denominator. Then using these

two posterior distributions, we developed computer programs, tables, and

graphs that can be used by a decision maker to determine the desired sample

size to obtain a 95 percent confidence level to estimate proportions using

Bayesian intervals. We also explained how the decision maker might select

the prior triangular distributions and their bounds, and how decision makers

can use tables and graphs to facilitate their determination of the sample size

in some decision making applications.

Finally, we showed that results from the Bayesian method are quite
favorable to those obtained using the classical method. When the values of

the sample size are small, the values of the sample sizes based on the

Bayesian method are quite an improvement. We also showed that when the

values of the sample size are large, the sample size n is reasonably insensitive

to the choice of bounds, Pmax or Prm.

In the next section we will suggest some additional studies.

B. SUGGESTIONS FOR FURTHER RESEARCH AND STUDY

In previous studies, the prior beta distribution allowed better control of the

representation of the decision maker's prior beliefs, while the prior uniform

distribution did not provide a great deal of flexibility. In our study, prior

triangular distributions did not provide exceptional flexibility in selecting

priors but we realized that the use of prior triangular distributions is less

complicated than using the prior beta distribution. In other words, these two

prior triangular distributions can be used when estimations about proportions

are made about the minimum or maximum values of the random variable P
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and the skewing of the prior. At this point we suggest that when esimations

are made about the modal values of the random variable, another prior

density function could have a different triangular shape with the following

p.d .f..

2(x - a)

(b- a)(c- a) '

f(x) = 2(c - x)
(c-b)(c-a) b

0, elsewhere,

where a < b _< c. Here, note that both upper and lower bounds can be

changed at the same time.

Also, in addition to 95 percent confidence, all tables and graphs could be

developed using other confidence levels, such as 90%, 97.5%, and 99%. An

additional study which could be made would determine the number of samples

for estimating proportions if nonparametric methods are to be used.

It is hoped that the work presented here will be useful to experimenters,

decision makers, and test planners in deciding how big a sample, or how many

trials must be done. in order to estimate a proportion or a probability.
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APPENDIX A. DERIVATION OF THE TWO VARIANTS OF THE TRIANGULAR

DENSITY FUNCTION

We will use basic calculus to derive the two variants of the triangular

density function. Both density functions are linear functions, one with negative

slope for random variable P defined 0 <p < pm,× < 1, and the other with

positive slope for 0 < prm,n -< P < 1. First, we will give the definition of slope that

is as follows:

If P, = (x, y,) and P, = (x2. y2) are points on a nonvertical line {, the slope

of t' is defined by the ratio [Ref. 9: p. 19]

Y2 - Ylm = .2x (A.1)

Then we will define the equation of f. Suppose ( is a line with slope m which

contains the point (x,.y,). To find the equation for ' we let p=(x,y) be an

arbitrary point on '. Then, by Equation A.l. we obtain

Y - Yi
X - X 1

so

y - Yl =m(x - x 1 ). (A.2)

Now we can find the equation of the first variant of the triangular

distribution with parameter P,,, for the line through (0,a) and ( P,"a ,0) (see

Figure 1). First, we will find the slope by using Equation A.1. that is

0-a aPmax -0 Pmax

where 0 <p Ip,<l and 2 _ a < co. Using the point (0,a) and the slope
_ a

m - a- in Equation A.2 then gives

39



y - a = Pmax (p - 0)

Setting y =f(p). we then have

f(P) a ( Pmax P). (A.3)

We will find an equation for "a" by using the following property of density

functions,

TP max a (Pmax -p)dp = 1,

0 Pmax

whii-h implies that

2
a =Pmax

Substituting "a" into Equation A.3, we have the triangular density ,Iction as

f(P 2 2 (Pmax - P) (A.4)
2

Pmax

where 0< p< Pra. < 1.

Also, we need to remember the definition of the expectation for a

continuous distribution to find the means of the two variants of the triangular

density function. If a random variable P has a continuous distribution for

which the p.d.f. is f(p) then the expectation E(P) is defined [Ref 8: p. 180] as

follows

EI(P) = p f(p) dp. (A.5)

The mean of a random variable with the density function of Equation A.4 is

then
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E P fPmax 2 Pmax (A.6)P f P 2. (Pmax -P)dp 3Pmax

Now we will find the equation of the second variant of the triangular

distribution with parameter pm,n for the line through (1,a) and ( p ,0) (see

Figure 2). First, we will find the slope by using Equation A.1, that is

0-a a

Pmin -1 (Pmin -1)

where 0 < p, :rn p < 1 and 2 < a<co. Using the point (1,a) and the slope
a

m - in Equation A.2 then gives(prm,. -1)

y- a a (p

(Pin ( - )

Setting y =f(p). we then have

f(P) _ a ( Pmin - P) (A.7)Pmin--

Again we will find another equation for "a" by using the following property

PMin (Pmin -p)dp = 1,

which results in

a 2
a=- Pmin

Substituting "a" into Equation A.7, we have the density function

f(p) 2 (Pmin , (A.8)

(Pmin - 1)2
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where 0_ p,_ p < 1. The mean is

E(P) = J -) dp (Pmin + 2). (A.9)
Pmn Pmin -1)2

The above two variants of the triangular distribution are used as our priors

to derive the posterior distribution based on Bayes' theorem in Chapter III of

this thesis.
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APPENDIX B. THE APL PROGRAM USED TO COMPUTE BAYESIAN

INTERVALS WITH THE TRIANGULAR PRIOR DISTRIBUTION HAVING

PARAMETER PMAX

v PMAXIMU1
1 THIS PROGRAM COMPUTES UPPER BOUNDSt LOWER BOUNDS AND BAYESIAN

2 A CONFIDENCE INTERVALS TO DETERMINE THE NUMBER OF SAMPLES TO ESTIMATE
3] n PROPORTIONS WITH g5 PERCENT CONFIDENCE USING PRIOR TRIANGULAR
4] n DISTRIBUTION HAVING PARAMETER PMAX (O<PSPMAX51). IT ASKS THE
51 n USER TO INPUT THE PARAMETER OF THE PRIOR TRIANGULAR DISTRIBUTION,
6 p VECTOR OF SAMPLE SIZES PROBABILITY VECTOR TO FIND BOUNDS

7 CONFIDENCE LEVEL. ALSO IT USES THE PROGRAM BETA AS SUBROUTINE.

99 0-'ENTER SAMPLE SIZE'
01 SS1 U

11 UJ'ENTER BOUND OF PRIOR TRIANGULAR DISTRIBUTION'I1 PM1 0
13 SAY+O

11 LOOPI:SAY4-SAY+I
15 O'ENTER PROBABILITY VECTOR FOR TESTING PLOW OR PUPPER'161 P+-

7 0'ENTER 0.025 OR 0.975 RELATING TO THE CONFIDENCE LEVEL
18J INT+O

120 LOOP2:
121] PLO+P[K+I]
122] ALFHAI+ ((SSIxPMI)+3)+3
123] ALFHA2+(((SS~xPMI )+6)f3) .
[2'! BETA1( ((3xSSI)+3)- (SSI PMa))+3
253 NI+(((SSlxPM1)+3) ((3xSS1)+6))2'PAR1+ATFHAlBETA1

27 PAR2+ALFHA2,BETA1
28. TPAR+ALFHA1 ALFHA2 BETA1 Ni

id ((PMlR PAi BETA PMlx(PAR1,BETA )
0 B2 NI~(PAR2 BETA PLO) -(Nix(PAR2 BETA 0))

131J B6+PMlx(PARI BETA PM1)
[32] B8+Nlx(PAR2 BETA PM1)
1331 DE+B6-B8
[34 FLO+(B1-B2)4DE
35 K K+I
361 (FLO5INT)/LOOP2
37 +(0.5<INT )/SONA
381 'PLOW = ', TPLO
39] PLO2+PLO
401 4(1!SAY)/LOOPI
1l1 SONA:

L42 FLOOIPLO
L"3 'PUPPER = '.mPLO1
'41 CI PLOI-PLO
4u5 'SIZE OF BAYESIAN INTERVAL 2A =',CI

v
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APPENDIX C. THE APL PROGRAM USED TO COMPUTE BAYESIAN

INTERVALS WITH THE TRIANGULAR PRIOR DISTRIBUTION HAVING

PARAMETER PMIN

V PRINIMUM
I n THIS PROGRAM COMPUTES UPPER BOUNDS LOWER BOUNDS AND BAYESIAN
2 CONFIDENCE INTERVALS TO DETERMINE 1HE NUMBER OF SAMPLES USING

A PRIOR TRIANGULAR DISTRIBUTION (OSPMIN!P<1). IT ASK THE !FSER
A TO INPUT THE VECTOR OF SAMPLE SIZE THE PARAMETER OF PRIOR
A TRIANGULAR DISTRIBUTION AND CONFIDENCE LEVEL. IT USES PROGRAM
A BETA AS SUBROUTINE.

-7
8: 0+'ENTER SAMPLE SIZE'
91 SS1i-0
10i 0'+ENTER BOUND OF PRIOR TRIANGULAR DISTRIBUTION'

PM1+0
12 SAY+ 013LOOPl:SAY+SAY+l1 3 + ENTER PROBABILITY VECTOR FOR TESTING PLOW OR PUPPER'

[16] O 'ENTER 0.025 OR 0.975 RELATED TO THE CONFIDENCE LEVEL'
' 18 1N-0
192 LOOP2:
20 PLO+P[K+1I
L21 ALFHA3 C(SSxpM1 )+(2xSS )+3 )3)
[22J ALFHA4 (((SSlxFM1 )+(2x$S)+6)+3)
[23] BET 2+((SI+3-(SSlxpMI))+3)
[24] N2 (((SSlxPMi)+(2xSS1)+3) ((3xSSI)+6))251 PAR1+ALFHA3,BETA2
26 P R2+ALFHA4,BETA2
.271 TPAR+ALFHA3 ALFHA4 BETA2 N2

BI ((PMl(PAR1 BETA PLO))-(PMx(PAR1 BETA PM1))
[29] B2 (N2- (R2 BETA PLO))-(N2x(PAR2 BETA PM1))
[30] B5 PMlx PAR1 BETA 1))
[31] B6+ (PMIx(PAR1 BETA PM1))
[32] DEI+B5-B6
[33] B7 (N2x(PAR2 BETA 1))
[3u] B8 (N2 (PAR2 BETA PMi))
[351 DE2+B7-B8
[36 DE DEi-DE21 7 ] FLO (B -B2)*DE
38] K K+1

[39] (FLO5INT)/LOOP2
[10] +(0.5<INT )/SONA
[141] 'PLOW z ',wPLO
['42 PLO2+PLO
[343 (-ISAY)/LOOPI
['4 SONA:
451 PLO +PLO
46] 'PUPPER = 'I PLOI

['47 CI PLOI-PLO
[48 'SIZE OF BAYESIAN INTERVAL 2A = ,CI
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APPENDIX D. THE APL PROGRAM USED TO COMPUTE THE BETA DENSITY

FUNCTION

V U+A BETA X*YWNODEVZI
11) 12/27/86 EVALb~A1 E. ThlE WlA CDF, PARAMETERS A AT VECTOR X USING THE
92, A BOUVER-BARCRAN CONTIN ED-FRACTIONTAT-VEPT7F-VAkYhG-FROWR7 TO-717:
:3.] 1TANVL __ _ID-O TRE-TNZERFACE-FCORPO TER S ENCE-AND
M4. n STATISTICS- 19S;P '25- N3~ H AGE~ ,+A255.-EEMS TO
:5,1n C'E-AV Ob 8 OR MORE DECIMALS-

':7 U+(pX 0

9 -(+ I =0)/F LIP
.10) w+y/4-,X
11i OD+-WO.x ( xN)xA[2 -N *x/(N 2)pA£1J+t2xI+-N

113] L:Z+I-+EVC. 1i ++D1 ;I]+Z

1 15, ULi'lU+(Z)x(A£1)1-++/A)x(W*AL1) )x(I-W)*A£2)16,1 fi((+ xX)/0
£17] F~lPA-A

(19,1 OD+Wo.x X iNx£) N x/(N,2)pAC1]+x2xI-N

2113 L1:Z+1+EV ;I1 *+O+DE;I] *
[22] -~ C I-1)0 I/Ll
(231 U -'1)I pU]+-1-(fZ)x(A[1J1-++A)x(/*AE1J)x(-f)*A[2J

v
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APPENDIX E. TABLES THAT CAN BE USED TO DETERMINE SAMPLE SIZES

BY USING THE PRIOR TRIANGULAR DISTRIBUTION WITH VARIOUS PMIN

PARAMETERS

Table 5. SAMPLE SIZES AND BAYESIAN INTERVALS USING THE TRIANGULAR
PRIOR DISTRIBUTION WITH PARAMETER PMIN=0.0

Sample Size Lower Bound Upper Bound Bayesian Interval Size
n = 2A

1 0.2110 0.9741 0.7631
2 0.2516 0.9603 0.7087

3 0.2836 0.9473 0.6637
4 0.3095 0.9353 0.6258
5 0.3310 0.9245 0.5935
6 0.3491 0.9148 0.5656

7 0.3647 0.9060 0.5412
8 0.3783 0.8980 0.5197

9 0.3903 0.8907 0.5005
10 0.4009 0.8841 0.4832
20 0.4666 0.8393 0.3728

30 0.4999 0.8143 0.3144

40 0.5209 0.7978 0.2769
50 0.5356 0.7858 0.2502
60 0.5466 0.7767 0.2300

70 0.5553 0.7694 0.2140
80 0.5624 0.7634 0.2010

90 0.5682 0.7583 0.1901
100 0.5732 0.7540 0.1807

110 0.5775 0.7502 0.1727
120 0.5813 0.7469 0.1656

130 0.5846 0.7440 0.1593
140 0.5876 0.7413 0.1537

150 0.5903 0.7389 0.1487

160 0.5927 0.7368 0.1441
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Table 6. SAMPLE SIZES AND BAYESIAN INTERVALS USING THE TRIANGULAR
PRIOR DISTRIBUTION WITH PARAMETER PMIN=0.1

Sample Size Lower Bound Upper Bound Bayesian Interval Size
n = 2A
1 0.2738 0.9779 0.7041
2 0.3029 0.9667 0.6638
3 0.3287 0.9560 0.6273
4 0.3511 0.9460 0.5949
5 0.3705 0.9370 0.5665
6 0.3873 0.9287 0.5414
7 0.4021 0.9212 0.5191
8 0.4151 0.9143 0.4992
9 0.4266 0.9080 0.4814
10 0.4370 0.9022 0.4652
20 0.5019 0.8625 0.3606
30 0.5351 0.8397 0.3046
40 0.5558 0.8246 0.2688
50 0.5705 0.8135 0.2430
60 0.5816 0.8050 0.2234
70 0.5902 0.7981 0.2079
80 0.5972 0.7925 0.1952
90 0.6031 0.7877 0.1846

100 0.6081 0.7837 0.1756
110 0.6123 0.7801 0.1678
120 0.6161 0.7770 0.1609
130 0.6194 0.7742 0.1548
140 0.6223 0.7717 0.1494
150 0.6250 0.7694 0.1445
160 0.6274 0.7574 0.1400
170 0.6296 0.7655 0.1359
180 0.6316 0.7638 0.1322
190 0.6334 0.7622 0.1288
200 0.6351 0.7607 0.1256
210 0.6367 0.7593 0.1226
220 0,6382 0.7580 0.1199
230 0.6395 0.7568 0.1173
240 0.6408 0.7557 0.1148
250 0.6420 0.7546 0.1126
260 0.6432 0.7536 0.1104
270 0.6442 0.7526 0.1084
280 0.6453 0.7517 0.1065
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Table 7. SAMPLE SIZES AND BAYESIAN INTERVALS USING THE TRIANGULAR
PRIOR DISTRIBUTION WITH PARAMETER PMIN = 0.2

Sample Size Lower Bound Upper Bound Bayesian Interval Size
n = 2A

1 0.3459 0.9815 0.6356

2 0.3653 0.9726 0.6073

3 0.3839 0.9640 0.5801
4 0.4012 0.9559 0.5547
5 0.4171 0.9485 0.5314

6 0.4314 0.9416 0.5102
7 0.4444 0.9353 0.4909
8 0.4561 0.9295 0.4734

9 0.4667 0.9242 0.4575
10 0.4764 0.9192 0.4428
20 0.5388 0.8845 0.3457
30 0.5715 0.8642 0.2927

40 0.5921 0.8504 0.2583

50 0.6066 0.8403 0.2337

60 0.6175 0.8325 0.2150

70 0.6260 0.8262 0.2002

80 0.6330 0.8210 0.1880

90 0.6385 0.8166 0.1781

100 0.6435 0.8128 0.1694

110 0.6477 0.8095 0.1618

120 0.6514 0.8066 0.1552

130 0.6546 0.8040 0.1493

140 0.6575 0.8016 0.1441

150 0.6601 0.7995 0.1393

160 0.6625 0.7976 0.1350

170 0.6647 0.7958 0.1311

180 0.6666 0.7942 0.1275

190 0.6684 0.7926 0.1242

200 0.6701 0.7912 0.1211
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Table 8. SAMPLE SIZES AND BAYESIAN INTERVALS USING THE TRIANGULAR
PRIOR DISTRIBUTION WITH PARAMETER PMIN = 0.3

Sample Size Lower Bound Upper Bound Bayesian Interval Size
n = 2A
1 0.4227 0.9848 0.5621
2 0.4352 0.9780 0.5428
3 0.4477 0.9713 0.5236
4 0.4599 0.9649 0.5050
5 0.4717 0.9590 0.4873

6 0.4828 0.9535 0.4707
7 0.4932 0.9483 0.4551
8 0.5029 0.9436 0.4407
9 0.5119 0.9392 0.4273
10 0.5203 0.9351 0.4148
20 0.5778 0.9055 0.3277
30 0.6093 0.8877 0.2784
40 0.6294 0.8754 0.2460
50 0.6436 0.8664 0.2228
60 0.6542 0.8593 0.2051
70 0.6625 0.8536 0.1911
80 0.6693 0.8488 0.1795
90 0.6747 0.8448 0.1702
100 0.6795 0.8413 0.1619
110 0.6836 0.8383 0.1547
120 0.6872 0.8356 0.1483
130 0.6904 0.8332 0.1427
140 0.6933 0.8310 0.1377
150 0.6958 0.8290 0.1332
160 0.6981 0.8272 0.1291
170 0.7002 0.8256 0.1254
180 0.7022 0.8241 0.1219
190 0.7039 0.8227 0.1188
200 0.7056 0.8214 0.1158
210 0.7071 0.8202 0.1131
220 0.7085 0.8190 0.1106
230 0.7098 0.8180 0.1082
240 0.7110 0.8170 0.1059
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Table 9. SAMPLE SIZES AND BAYESIAN INTERVALS USING THE TRIANGULAR
PRIOR DISTRIBUTION WITH PARAMETER PMIN=0.4

Sample Size Lower Bound Upper Bound Bayesian Interval Size
n = 2A
1 0.5022 0.9878 0.4856
2 0.5099 0.9828 0.4729
3 0.5179 0.9778 0.4599
4 0.5259 0.9731 0.4472
5 0.5339 0.9685 0.4346
6 0.5417 0.9643 0.4226
7 0.5492 0.9602 0.4110
8 0.5565 0.9565 0.4000
9 0.5634 0.9530 0.3896

10 0.5701 0.9497 0.3796
20 0.6196 0.9253 0.3057
30 0.6489 0.9101 0.2612
4u 0.6681 0.8995 0.2314
50 0.6817 0.8915 0.2098
60 0.6919 0.8852 0.1933
70 0.7000 0.8801 0,1801
80 0.7065 0.8759 0.1694
90 0.7116 0.8723 0.1608
100 0.7163 0.8692 0.1529
110 0.7203 0.8664 0.1461
120 0.7238 0.8640 0.1402

130 0.7269 0.8618 0.1349
140 0.7296 0.8598 0.1302
150 0.7321 0.8580 0.1259
160 0.7343 0.8564 0.1220
170 0.7364 0.8549 0.1185
180 0.7382 0.8535 0.1152

190 0.7399 0.8522 0.1123
200 0.7415 0.8510 0.1095
210 0.7430 0.8499 0.1069
220 0.7443 0.8488 0.1045
230 0.7456 0.8479 0.1023
240 0.7468 0.8469 0.1002
250 0.7479 0.8461 0.0982
260 0.7490 0.8453 0.0963
270 0.7499 0.8445 0.0945
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Table 10. SAMPLE SIZES AND BAYESIAN INTERVALS USING THE
TRIANGULAR PRIOR DISTRIBUTION WITH PARAMETER PMIN = 0.5

Sample Size Lower Bound Upper Bound Bayesian Interval Size
n __2A
1 0.5833 0.9905 0.4072
2 0.5879 0.9871 0.3992
3 0.5927 0.9836 0.3909
4 0,5975 0.9802 0.3827
5 0.6025 0.9770 0.3745
6 0.6074 0.9739 0.3665
7 0.6124 0.9709 0.3585
8 0.6172 0.9681 0.3509
9 0.6220 0.9654 0.3434
10 0.6267 0.9629 0.3362
20 0.6654 0.9437 0.2783
30 0.6911 0.9312 0.2401
40 0.7086 0.9223 0.2137
50 0.7213 0.9155 0.1942
60 0.7310 0.9101 0.1791
70 0.7386 0.9057 0.1671
80 0.7448 0.9020 0.1572
90 0.7500 0.8989 0.1489
100 0.7544 0.8960 0.1416
110 0.7582 0.8937 0.1355
120 0.7611 0.8916 0.1305
130 0.7641 0.8897 0.1256
140 0.7667 0.8879 0.1212
150 0.7691 0.8863 0.1172

160 0.7712 0.8848 0.1136
170 0.7732 0.8835 0.1103
180 0.7750 0.8823 0.1073
190 0.7766 0.8811 0.1045
200 0.7781 0.8800 0.1019
210 0.7795 0.8790 0.0996
220 0.7808 0.8781 0.0973
230 0.7820 0.8772 0.0952
240 0.7831 0.8764 0.0933
250 0.7842 0.8756 0.0914
260 0.7852 0.8749 0.0897
270 0.7861 0.8742 0.0880
280 0.7870 0.8735 0.0865
290 0.7879 0.8729 0.0850
300 0.7887 0.8723 0.0836

51



Table 11. SAMPLE SIZES AND BAYESIAN INTERVALS USING THE
TRIANGULAR PRIOR DISTRIBUTION WITH PARAMETER PMIN = 0.6

Sample Size Lower Bound Upper Bound Bayesian Interval Size
n = 2A
1 0.6656 0.9930 0.3274
2 0.6681 0.9908 0.3227
3 0.6707 0.9886 0.3179
4 0.6734 0.9864 0.3130
5 0.6762 0.9842 0.3080
6 0.6790 0.9821 0.3031
7 0.6818 0.9801 0.2983
8 0.6847 0.9782 0.2935
9 0.6876 0.9763 0.2887

10 0.6904 0.9746 0.2842
20 0.7167 0.9604 0.2437
30 0.7369 0.9508 0.2139
40 0.7518 0.9437 0.1919
50 0.7631 0.9382 0.1751
60 0.7718 0.9338 0.1620
70 0.7788 0.9301 0.1513
80 0.7845 0.9271 0.1426
90 0.7893 0.9244 0.1351

100 0.7934 0.9221 0.1287
110 0.7969 0.9200 0.1231
120 0.8000 0.9182 0.1182
130 0.8028 0.9165 01137
140 0.8052 0.9150 0.1098
150 0.8074 0.9137 0.1063
160 0.8093 0.9124 0.1031
170 0.8108 0.9113 0.1005
180 0.8125 0.9103 0.0978
190 0.8140 0.9093 0.0953
200 0.8154 0.9083 0.0929
210 0.8167 0.9075 0.0907
220 0.8180 0.9067 0.0887
230 0.8191 0.9059 0.0868
240 0.8201 0.9052 0.0850
250 0.8211 0.9045 0.0833
260 0.8221 0.9038 0.0818
270 0.8230 0.9032 0.0803
280 0.8238 0.9026 0.0788
290 0.8246 0.9021 0.0775
300 0.8253 0.9015 0.0762
350 0.8286 0.8992 0.0707
400 0.8311 0.8973 0.0662
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Table 12. SAMPLE SIZES AND BAYESIAN INTERVALS USING THE
TRIANGULAR PRIOR DISTRIBUTION WITH PARAMETER PMIN=0.7

Sample Size Lower Bound Upper Bound Bayesian Interval Size
n = 2A
1 0.7486 0.9951 0.2465
2 0.7498 0.9939 0.2441
3 0.7510 0.9927 0.2417
4 0.7523 0.9915 0.2392
5 0.7537 0.9902 0.2365
6 0.7551 0.9890 0.2339
7 0.7565 0.9878 0.2313
8 0.7579 0.9867 0.2288
9 0.7593 0.9855 0.2262
10 0.7608 0.9844 0.2236
20 0.7754 0.9752 0.1998
30 0.7885 0.9684 0.1799
40 0.7994 0.9633 0.1639
50 0.8082 0.9592 0.1510
60 0.8155 0.9559 0.1404
70 0.8214 0.9531 0.1317
80 0.8263 0.9507 0.1244
90 0.8306 0.9486 0.1180
100 0.8342 0.9468 0.1126
110 0.8373 0.9451 0.1078
120 0.8401 0.9436 0.1035
130 0.8425 0.9424 0.0999
140 0.8447 0.9411 0.0964
150 0.8466 0.9400 0.0934
160 0.8479 0.9391 0.0912
170 0.8496 0.9381 0.0885
180 0.8511 0.9373 0.0861
190 0.8525 0.9364 0.0839
200 0.8538 0.9357 0.0819
210 0.8550 0.9350 0.0800
220 0.8561 0.9343 0.0782
230 0.8571 0.9336 0.0765
240 0.8581 0.9330 0.0749
250 0.8590 0.9325 0.0735
260 0.8599 0.9319 0.0721
270 0.8607 0.9314 0.0708
280 0.8614 0.9309 0.0695
290 0.8621 0.9305 0.0683
300 0.8628 0.9300 0.0672
350 0.8658 0.9281 0.0623
400 0.8681 0.9265 0.0583
450 0.8701 0.9251 0.0551
500 0.8717 0.9240 0.0523
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Table 13. SAMPLE SIZES AND BAYESIAN INTERVALS USING THE
TRIANGULAR PRIOR DISTRIBUTION WITH PARAMETER PMIN = 0.8

Sample Size Lower Bound Upper Bound Bayesian Interval Size
n = 2A
1 0.8321 0.9970 0.1649
2 0.8325 0.9965 0.1640
3 0.8330 0.9960 0.1630
4 0.8335 0.9954 0.1619
5 0.8340 0.9949 0.1609
6 0.8345 0.9943 0.1598
7 0.8351 0.9938 0.1587
8 0.8356 0.9932 0.1576
9 0.8361 0.9927 0.1566
10 0.8367 0.9922 0.1555
20 0.8426 0.9874 0.1448
30 0.8486 0.9836 0.1350
40 0.8543 0.9804 0.1261
50 0.8596 0.9779 0.1183
60 0.8642 0.9757 0.1115
70 0.8683 0.9738 0.1055
80 0.8719 0.9723 0.1004
90 0.8751 0.9709 0.0958

10c 0.8779 0.9696 0.0917
110 0.8804 0.9685 0.0881
120 0.8826 0.9674 0,0848
130 0.8846 0.9665 0.0819
140 0.8853 0.9657 0.0803
150 0.8871 0.9649 0.0778
160 0.8887 0.9641 0.0754
170 0.8901 0.9634 0.0733
180 0.8914 0.9628 0.0713
190 0.8926 0.9622 0.0695
200 0.8938 0.9616 0.0678
210 0.8948 0.9611 0.0663
220 0.8957 0.9606 0.0648
230 0.8966 0.9601 0.0634
240 0.8975 0.9596 0.0621
250 0.8983 0.9592 0.0609
260 0.8990 0.9588 0.0598
270 0.8997 0.9584 0.0587
280 0.9004 0.9580 0.0577
290 0.9010 0.9577 0.0567
300 0.9016 0.9573 0.0558
350 0.9041 0.9559 0.0517
400 0.9062 0.9546 0.0484
450 0.9078 0.9536 0.0457
500 0.9093 0.9527 0.0434
550 0.9105 0.9519 0.0414
600 0.9115 0.9512 0.0397
650 0.9124 0.9506 0.0381
700 0.9132 0.9500 0.0368
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APPENDIX F. TABLES THAT CAN BE USED TO DETERMINE SAMPLE SIZES

BY USING THE PRIOR TRIANGULAR DISTRIBUTION WITH VARIOUS PMAX

PARAMETERS

Table 14. SAMPLE SIZES AND BAYESIAN INTERVALS USING THE
TRIANGULAR PRIOR DISTRIBUTION WITH PARAMETER PMAX = 1.0

Sample Size Lower Bound Upper Bound Bayesian Interval Size
n = 2A
1 0.0259 0.7890 0.7631
2 0.0397 0.7484 0.7087
3 0.0527 0.7164 0.6637

4 0.0647 0.6905 0.6258

5 0.0755 0.6690 0.5935
6 0.0852 0.6509 0.5656
7 0.0940 0.6353 0.5412

8 0.1020 0.6217 0.5197
9 0.1093 0.6097 0.5005

10 0.1159 0.5991 0.4832

20 0.1607 0.5334 0.3728
30 0.1857 0.5001 0.3144
40 0.2022 0.4791 0.2769

50 0.2142 0.4644 0.2502
60 0.2233 0.4534 0.2300
70 0.2306 0.4447 0.2140
80 0.2366 0.4376 0.2010
90 0.2417 0.4318 0.1901
100 0.2460 0.4268 0.1807
110 0.2498 0.4225 0.1727

120 0.2531 0.4187 0.1656

130 0.2560 0.4154 0.1593
140 0.2587 0.4124 0.1537

150 0.2611 0.4097 0.1487

160 0.2632 0.4073 0.1441
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Table 15. SAMPLE SIZES AND BAYESIAN INTERVALS USING THE
TRIANGULAR PRIOR DISTRIBUTION WITH PARAMETER PMAX = 0.9

Sample Size Lower Bound Upper Bound Bayesian Interval Size
n = 2A

1 0.0221 0.7262 0.7041
2 0.0339 0.6971 0.6638
3 0.0440 0.6713 0.6273
4 0.0540 0.6489 0.5949
5 0.0630 0.6295 0.5665
6 0.0713 0.6127 0.5414
7 0.0788 0.5979 0.5191
8 0.0857 0.5849 0.4992
9 0.0920 0.5734 0.4814
10 0.0978 0.5630 0.4652
20 0.1375 0.4981 0.3606
30 0.1603 0.4649 0.3046
40 0.1754 0.4442 0.2688
50 0.1865 0.4295 0.2430
60 0.1950 0.4184 0.2234
70 0.2019 0.4098 0.2079
80 0.2075 0.4028 0.1952
90 0.2123 0.3969 0.1846
100 0.2163 0.3919 0.1756
110 0.2199 0.3877 0.1678
120 0.2230 0.3839 0.1609
130 0.2258 0.3806 0.1548
140 0.2283 0.3777 0.1494
15n 0,2306 0.3750 0.1445
160 0.2326 0.3726 0.1400
170 0.2345 0.3704 0.1359
180 0.2362 0.3684 0.1322
190 0.2378 0.3666 0.1288
200 0.2393 0.3649 0.1256
210 0.2407 0.3633 0.1226
220 0.2420 0.3618 0.1199
230 0.2432 0.3605 0.1173
240 0.2443 0.3592 0.1148
250 0.2454 0.3580 0.1126
26n 0.2464 0.3568 0.1104
270 0.2474 0.3558 0.1084
280 0.2483 0.3547 0.1065
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Table 16. SAMPLE SIZES AND BAYESIAN INTERVALS USING THE
TRIANGULAR PRIOR DISTRIBUTION WITH PARAMETER PMAX=0.8

Sample Size Lower Bound Upper Bound Bayesian Interval Size
n = 2A

1 0.0185 0.6541 0.6356
2 0.0274 0.6347 0.6073
3 0.0360 0.6161 0.5801
4 0.0441 0.5988 0.5547
5 0.0515 0.5829 0.5314

6 0.0584 0.5686 0.5102
7 0.0647 0.5556 0.4909

8 0.0705 0.5439 0.4734
9 0.0758 0.5333 0.4575
10 0.0808 0.5236 0.4428

20 0.1155 0.4612 0.3457
30 0.1358 0.4285 0.2927
40 0.1496 0.4079 0.2583
50 0.1597 0.3934 0.2337
60 0.1675 0.3825 0.2150

70 0.1738 0.3740 0.2002
80 0.1790 0.3670 0.1880

90 0.1834 0.3615 0.1781
100 0.1872 0.3565 0.1694

110 0.1905 0.3523 0.1618

120 0.1934 0.3486 0.1552

130 0.1960 0.3454 0.1493

140 0.1984 0.3425 0.1441

150 0.2005 0.3399 0.1393

160 0.2024 0.3375 0.1350

170 0.2042 0.3353 0.1311

180 0.2058 0.3334 0.1275

190 0.2074 0.3316 0.1242

200 0.2088 0.3299 0.1211
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Table 17. SAMPLE SIZES AND BAYESIAN INTERVALS USING THE
TRIANGULAR PRIOR DISTRIBUTION WITH PARAMETER PMAX= 0.7

Sample Size Lower Bound Upper Bound Bayesian Interval Size
n = 2A
1 0.0152 0.5773 0.5621

2 0.0220 0.5648 0.5428

3 0.0287 0.5523 0.5236

4 0.0351 0.5401 0.5050

5 0.0410 0.5283 0.4873

6 0.0465 0.5172 0.4707

7 0.0517 0.5068 0.4551

8 0.0564 0.4971 0.4407

9 0.0608 0.4881 0.4273

10 0.0649 0.4797 0.4148
20 0.0945 0.4222 0.3277
30 0.1123 0.3907 0.2784

40 0.1246 0.3706 0.2460

50 0.1336 0.3564 0.22'8
60 0.1407 0.3458 0.2051
70 0.1464 0.3375 0.1911
80 0.1512 0.3307 0.1795
90 0.1552 0.3254 0.1702

100 0.1587 0.3205 0.1619

110 0.1617 0.3164 0.1547

120 0.1644 0.3128 0.1483

130 0.1668 0.3096 0.1427

140 0.1690 0.3067 0.1377

150 0.1710 0.3042 0.1332

160 0.1728 0.3019 0.1291

170 0.1744 0.2998 0.1254

180 0.1759 0.2978 0.1219

190 0.1773 0.2961 0.1188

200 0.1786 0.2944 0.1158

210 0.1798 0.2929 0.1131

220 0.1810 0.2915 0.1106

230 0.1820 0.2902 0.1082

240 0.1830 0.2890 0.1059
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Table 18. SAMPLE SIZES AND BAYESIAN INTERVALS USING THE
TRIANGULAR PRIOR DISTRIBUTION WITH PARAMETER PMAX = 0.6

Sample Size Lower Bound Upper Bound Bayesian Interval Size
n = 2A
1 0.0122 0.4978 0.4856
2 0.0172 0.4901 0.4729
3 0.0222 0.4821 0.4599
4 0.0269 0.4741 0.4472
5 0.0315 0.4661 0.4346
6 0.0357 0.4583 0.4226
7 0.0398 0.4508 0.4110
8 0.0435 0.4435 0.4000
9 0.0470 0.4366 0.3896
10 0.0503 0.4299 0.3796
20 0.0747 0.3804 0.3057
30 0.0899 0.3511 0.2612
40 0.1005 0.3319 0.2314
50 0.1085 0.3183 0.2098
60 0.1148 0.3081 0.1933
70 0.1199 0.3000 0.1801
80 0.1241 0.2935 0.1694
90 0.1277 0.2884 0.1608
100 0.1308 0.2837 0.1529
110 0.1336 0.2797 0.1461
120 0.1360 0.2762 0.1402
130 0.1382 0.2731 0.1349
140 0.1402 0.2704 0.1302
150 0.1420 0.2679 0.1259
160 0.1436 0.2657 0.1220
170 0.1451 0.2636 0.1185
180 0.1465 0.2618 0.1152
190 0.1478 0.2601 0.1123
200 0.1490 0.2585 0.1095
210 0.1501 0.2570 0.1069
220 0.1512 0.2557 0.1045
230 0.1521 0.2544 0.1023
240 0.1531 0.2532 0.1002
250 0.1539 0.2521 0.0982
260 0.1547 0.2510 0.0963
270 0.1555 0.2501 0.0945
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Table 19. SAMPLE SIZES AND BAYESIAN INTERVALS USING THE
TRIANGULAR PRIOR DISTRIBUTION WITH PARAMETER PMAX= 0.5

Sample Size Lower Bound Upper Bound Bayesian Interval Size
n = 2A
1 0.0095 0.4167 0.4072
2 0.0129 0.4121 0.3992
3 0.0164 0.4073 0.3909
4 0.0198 0.4025 0.3827
5 0.0230 0.3975 0.3745
6 0.0261 0.3926 0.3665
7 0.0291 0.3876 0.3585
8 0.0319 0.3828 0.3509
9 0.0346 0.3780 0.3434
10 0.0371 0.3733 0.3362
20 0.0563 0.3346 0.2783
30 0.0688 0.3089 0.2401
40 0.0777 0.2914 0.2137
50 0.0845 0.2787 0.1942
60 0.0899 0.2690 0.1791
70 0.0943 0.2614 0.1671
80 0.0980 0.2552 0.1572
90 0.1011 0.2500 0.1489
100 0.1040 0.2456 0.1416
110 0.1062 0.2422 0.1360
120 0.1084 0.2389 0.1305
130 0.1103 0.2359 0.1256
140 0.1121 0.2333 0.1212
150 0.1137 0.2309 0.1172
160 0.1152 0.2288 0.1136
170 0.1165 0.2268 0.1103
180 0.1177 0.2250 0.1073
190 0.1189 0.2234 0.1045
200 0.1200 0.2219 0.1019
210 0.1210 0.2205 0.0996
220 0.1219 0.2192 0.0973
230 0.1228 0.2180 0.0952
240 0.1236 0.2169 0.0933
250 0.1244 0.2158 0.0914
260 0.1251 0.2148 0.0897
270 0.1258 0.2139 0.0880
280 0.1265 0.2130 0.0865
290 0.1271 0.2121 0.0850
300 0.1277 0.2113 0.0836
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Table 20. SAMPLE SIZES AND BAYESIAN INTERVALS USING THE
TRIANGULAR PRIOR DISTRIBUTION WITH PARAMETER PMAX = 0.4

Sample Size Lower Bound Upper Bound Bayesian Interval Size
n = 2A
1 0.0070 0.3344 0.3274
2 0.0082 0.3309 0.3227
3 0.0114 0.3293 0.3179
4 0.0136 0.3266 0.3130
5 0.0158 0.3238 0.3080
6 0.0179 0.3210 0.3031
7 0.0199 0.3182 0.2983
8 0.0218 0.3153 0.2935
9 0.0237 0.3124 0.2887
10 0.0254 0.3096 0.2842
20 0.0396 0.2833 0.2437
30 0.0492 0.2631 0.2139
40 0.0563 0.2482 0.1919
50 0.0618 0.2369 0.1751
60 0.0662 0.2282 0.1620
70 0.0699 0.2212 0.1513
80 0.0729 0.2155 0.1426
90 0.0756 0.2107 0.1351
100 0.0779 0.2066 0.1287
110 0.0800 0.2031 0.1231
120 0.0818 0.2000 0.1182
130 0.0835 0.1972 0.1137
140 0.0850 0.1948 0.1098
150 0.0863 0.1926 0.1063
160 0.0875 0.1910 0.1035
170 0.0887 0.1892 0.1005
180 0.0897 0.1875 0.0978
190 0.0907 0.1860 0.0953
200 0.0917 0.1846 0.0929
210 0.0925 0.1833 0.0907
220 0.0933 0.1820 0.0887
230 0.0941 0.1809 0.0868
240 0.0948 0.1799 0.0850
250 0.0955 0.1789 0.0833
260 0.0962 0.1779 0.0818
270 0.0968 0.1770 0.0803
280 0.0974 0.1762 0.0788
290 0.0979 0.1754 0.0775
300 0.0985 0.1747 0.0762
350 0.1008 0.1714 0.0707
400 0.1027 0.1689 0.0662
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Table 21. SAMPLE SIZES AND BAYESIAN INTERVALS USING THE
TRIANGULAR PRIOR DISTRIBUTION WITH PARAMETER PMAX=0.3

Sample Size Lower Bound Upper Bound Bayesian Interval Size
n = 2A
1 0.0049 0.2449 0.2465
2 0.0061 0.2502 0.2441
3 0.0073 0.2490 0.2417
4 0.0085 0.2477 0.2392
5 0.0098 0.2463 0.2365
6 0.0110 0.2449 0.2339
7 0.0122 0.2435 0.2313
8 0.0133 0.2421 0.2288
9 0.0145 0.2407 0.2262
10 0.0136 0.2392 0.2236
20 0.0248 0.2246 0.1998
30 0.0316 0.2115 0.1199
40 0.0367 0.2006 0.1639
50 0.0408 0.1918 0.1510
60 0.0441 0.1845 0.1404
70 0.0469 0.1786 0.1317
80 0.0493 0.1737 0.1244
90 0.0514 0.1694 0.1180
100 0.0632 0.1658 0.1126
110 0.0549 0.1627 0.1078
120 0.0564 0.1599 0.1035
130 0.0576 0.1575 0.0999
140 0.0589 0.1553 0.0964
150 0.0600 0.1534 0.0934
160 0.0609 0.1521 0.0912
170 0.0619 0.1504 0.0885
180 0.0627 0.1489 0.0861
190 0.0636 0.1475 0.0839
200 0.0643 0.1462 0.0819
210 0.0650 0.1450 0.0800
220 0.0657 0.1439 0.0782
230 0.0664 0.1429 0.0765
240 0.0670 0.1419 0.0749
250 0.0675 0.1410 0.0735
260 0.0681 0.1401 0.0721
270 0.0686 0.1393 0.0708
280 0.0691 0.1386 0.0695
290 0.0695 0.1379 0.0683
300 0.0700 0.1372 0.0672
350 0.0719 0.1342 0.0623
400 0.0735 0.1319 0.0583
450 0.0749 0.1299 0.0551
500 0.0760 0.1283 0.0523
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Table 22. SAMPLE SIZES AND BAYESIAN INTERVALS USING THE
TRIANGULAR PRIOR DISTRIBUTION WITH PARAMETER PMAX =0.2

Sample Size Lower Bound Upper Bound Bayesian Interval Size
n = 2A
1 0.0030 0.1679 0.1649
2 0.0035 0.1675 0.1640
3 0.0040 0.1670 0.1630
4 0.0046 0.1665 0.1619
5 0.0051 0.1660 0.1609
6 0.0057 0.1655 0.1598
7 0.0062 0.1649 0.1587
8 0.0068 0.1644 0.1576
9 0.0073 0.1639 0.1566
10 0.0078 0.1633 0.1555
20 0.0126 0.1574 0.1448
30 _ 0.0164 0.1514 0.1350
40 0.0196 0.1457 0.1261
50 0.0221 0.1404 0.1183
60 0.0243 0.1358 0.1115
70 0.0262 0.1317 0.1055
80 0.0277 0.1281 0.1004
90 0.0291 0.1249 0.0958
100 0.0304 0.1221 0.0917
110 0.0315 0.1196 0.0881
120 0.0326 0.1174 0.0848
130 0.0334 0.1166 0.0832
140 0.0343 0.1147 0.0803
150 0.0351 0.1129 0.0778
160 0.0359 0.1113 0.0754
170 0.0366 0.1099 0.0733
180 0.0372 0,1086 0.0713
190 0.0378 0.1074 0.0695
200 0.0384 0.1062 0.0678
210 0.0389 0.1052 0.0663
220 0.0394 0.1043 .0.0648
230 0.0399 0._1034 .0.0634
240 0.0404 0.1025 0.0621
250 0.0408 0.1017 0.0609
260 0.0412 01010 0.0598
270 0.0416 0,1003 0.0587
280 0.0420 0.0996 0.0577
290 0.0423 0.0990 0.0567
300 0.0427 0,0984 0.0558
350 0.0441 0.0959 0.0517
400 0.0454 0.0938 0.0484
450 0.0464 0.0922 0.0457
500 0.0473 0.0907 0.0434
550 0.0481 0.0895 0.0414
600 0.0488 0.0885 0,0397
650 0.0494 0.0876 0.0381
700 0.0500 0.0868 0.0368
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APPENDIX G. GRAPHS THAT CAN BE USED TO DETERMINE SAMPLE SIZES

BY USING PRIOR TRIANGULAR DISTRIBUTION WITH VARIOUS PARAMETERS

PMIN OR PMAX
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Figure 9. Number of Samples vs the Size of the 95% Bayesian Interval with a

Triangular Prior Distribution with Pmin=0 or Pmaxl
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Figure 10. Number of Samples vs The Size of the 95% Bayesian Interval with

a Triangular Prior Distribution with Pmin =0.1 or Pmax =0.9
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Figure 11. Number of Samples vs The Size of the 95% Bayesian Interval with

a Triangular Prior Distribution with Pmin =0.2 or Pmax = 0.8
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Figure 12. Number of Samples vs The Size of the 95% Bayesian Interval with

a Triangular Prior Distribution with Pmin=0.3 or Pmax = 0.7
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Figure 13. Number of Samples vs The Size of the 95% Bayesian Interval with

a Triangular Prior Distribution with Pmin =0.4 or Pmax =0.6

6,c,



r 0

-

V)
LLJ

L-C ;

Ld

0 100 200 300
SAMPLE SIZE n

Figure 14. Number of Samples vs The Size of the 95% Bayesian Interval with

a Triangular Prior Distribution with Pmin =PmaxO= .5
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Figure 15. Number of Samples vs The Size of the 95% Bayesian Interval with

a Triangular Prior Distribution with Pmin =0.6 or Pmax =0.4
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Figure 16. Number of Samples vs The Size of the 95% Bayesian Interval with

a Triangular Prior Distribution with Pmin =0.7 or Pmax =0.3
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